Low threshold amplified spontaneous emission from tin oxide quantum dots: a instantiation of dipole transition silence semiconductors.

نویسندگان

  • Shu Sheng Pan
  • Siu Fung Yu
  • Wen Fei Zhang
  • Hai Zhu
  • Wei Lu
  • Li Min Jin
چکیده

Direct bandgap semiconductors, such as In2O3, Cu2O, and SnO2, have enormous applications in photochemistry, photovoltaics, and optoelectronics. Due to the same parity of conduction and valence bands, the dipole transition is silent in these direct bandgap semiconductors. The low band-to-band transition efficiency prevents them from high intensity light emission or absorption. Here, we report the fabrication of SnO2 quantum dots (QDs) with sizes less than the exciton Bohr radius by a facile "top-down" strategy based on laser fragmentation of SnO in water. The SnO2 QDs shows exciton emission at ∼300 nm with a high quantum yield of ~17%. Amplified spontaneous exciton emission is also achieved from a thin layer of SnO2 QDs dispersed in PEG400 on a quartz substrate. Therefore, we have shown that SnO2 QDs can be a potential luminescent material suitable for the realization of ultraviolet B lasing devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap.

We present time-resolved emission experiments of semiconductor quantum dots in silicon 3D inverse-woodpile photonic band gap crystals. A systematic study is made of crystals with a range of pore radii to tune the band gap relative to the emission frequency. The decay rates averaged over all dipole orientations are inhibited by a factor of 10 in the photonic band gap and enhanced up to 2× outsid...

متن کامل

Quantum Maxwell-Bloch Equations for Spontaneous Emission in Optical Semiconductor Devices

We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous optical semiconductor devices taking into account the quantum noise effects which cause spontaneous emission and amplified emission. Analytical expressions derived from the QMBE are presented for the spontaneous emission factor β and the far field pattern of amplified spontaneous emission in broad area quantum well la...

متن کامل

Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers

We present quantum Maxwell-Bloch equations ~QMBE! for spatially inhomogeneous semiconductor laser devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction of the light field with the quantum states of the electrons and the holes near the band gap. By taking into account field-field correlations and field-dipole correlations, the QMBE include quant...

متن کامل

Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers

Colloidal quantum dots, with their tunable luminescence properties, are uniquely suited for use as lumophores in lightemitting devices for display technologies and large-area planar lighting. In contrast to epitaxially grown quantum dots, colloidal quantum dots can be synthesized as highly monodisperse colloids and solution deposited over large areas into densely packed, solid-state multilayers...

متن کامل

CdS(x)Se(1-x)/ZnS semiconductor nanocrystal laser with sub 10kW/cm(2) threshold and 40nJ emission output at 600 nm.

A colloidal quantum dot laser emitting at 600 nm with a sub 10kW/cm(2) threshold at 5ns pulse pumping is reported. The device has a second order distributed feedback cavity for vertical emission and incorporates a bilayer planar waveguide structure based on a film of yellow-orange alloyed-core/shell CdS(x)Se(1-x)/ZnS quantum dots over-coated with polyvinyl alcohol. A study of the amplified spon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 23  شماره 

صفحات  -

تاریخ انتشار 2013